

ARCVS TECHNOLOGY

Mumbai Office: 202, Plot 62, Sector 2A, Kopar Kherna Navi Mumbai.

Gurgaon Office: 118B, 1st Floor Suncity Trade Tower, sec 21 Gurgaon.

Email Id : sales@arcvsporjects.com. Contact : 9968935937, 9108291740.

FIRE PUMP SUCTION PIPE SIZING

- **CALCULATION SHEET (NFPA-20 COMPLIANCE)**

Project: ais Bangalore, Fire Protection System

Pump Capacity: 2850 LPM (750 GPM)

Pump Suction Nozzle Size: 150 mm

Applicable Standard: NFPA-20 (Latest Edition)

- **1. DESIGN BASIS**

- Fire pump rated flow = **2850 LPM**

- Purpose of calculation:

To verify adequacy of suction piping size with respect to **velocity and hydraulic performance** as required by NFPA-20.

- Design philosophy:

- Minimize suction losses
- Improve NPSH available
- Ensure reliable fire pump operation

- **2. FLOW CONVERSION**

$$Q = 2850 \text{ LPM}$$
$$Q = \frac{2850}{1000 \times 60} = 0.0475 \text{ m}^3/\text{s}$$

3. NFPA-20 REQUIREMENTS (REFERENCE)

- Suction pipe shall be sized to provide **adequate flow with minimum friction loss**
- No requirement that suction pipe be same size as pump suction nozzle
- Good engineering practice limits suction velocity to **1.0–1.5 m/s**
- Maximum allowable velocity (upper limit): **15 ft/s (4.6 m/s)**

- **4. VELOCITY CHECK – 150 mm SUCTION PIPE**

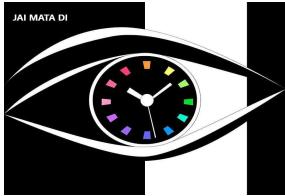
Assumptions

- Internal diameter (D) ≈ **0.15 m**

Area calculation

$$A = \frac{\pi}{4} \times (0.15)^2 = 0.0177 \text{ m}^2$$

Velocity calculation


$$V = \frac{Q}{A}$$
$$V = \frac{0.0475}{0.0177} = 2.68 \text{ m/s}$$

Result

- Suction velocity = **2.68 m/s**
- This value is:
 - Below NFPA maximum limit
 - **Above recommended suction velocity for fire pumps**

✗ 150 mm suction pipe not preferred due to higher velocity and friction loss

- **5. VELOCITY CHECK – 200 mm SUCTION PIPE**

ARCVS TECHNOLOGY

Mumbai Office: 202, Plot 62, Sector 2A, Kopar Kherna Navi Mumbai.

Gurgaon Office: 118B, 1st Floor Suncity Trade Tower, sec 21 Gurgaon.

Email Id : sales@arcvsporjects.com. Contact : 9968935937, 9108291740.

Assumptions

- Internal diameter (D) \approx **0.20 m**

Area calculation

$$A = \frac{\pi}{4} \times (0.20)^2 = 0.0314 \text{ m}^2$$

Velocity calculation

$$V = \frac{0.0475}{0.0314} = 1.51 \text{ m/s}$$

Result

- Suction velocity = **1.51 m/s**
- Within recommended range for suction piping
- Results in:
 - Lower friction loss
 - Improved NPSH available
 - Reduced cavitation risk

200 mm suction pipe acceptable and recommended

- **6. REDUCER REQUIREMENT**
- Pump suction nozzle: **150 mm**
- Suction pipe: **200 mm**
- Reducer type:
 - **Eccentric reducer (flat on top)**
- Purpose:
 - Prevent air pocket formation
 - Maintain full bore flow at suction

Fully compliant with NFPA-20

7. CONCLUSION

Although the fire pump suction nozzle size is **150 mm**, hydraulic analysis shows that:

- 150 mm suction pipe results in **high velocity (2.68 m/s)**
- Increasing suction pipe size to **200 mm** reduces velocity to **1.51 m/s**
- Reduced velocity ensures:
 - Lower friction losses
 - Improved NPSH conditions
 - Reliable fire pump performance

8. DESIGN STATEMENT (FOR SUBMISSION)

"The fire pump suction piping has been increased from the pump suction nozzle size of 150 mm to 200 mm to limit suction velocity to approximately 1.5 m/s at a flow rate of 2850 LPM. This complies with NFPA-20 requirements for minimizing suction losses and ensuring reliable fire pump operation. An eccentric reducer (flat on top) is provided at the pump suction."

FINAL DESIGN ADOPTED

- **Pump suction nozzle:** 150 mm
- **Suction piping provided:** 200 mm
- **Standard:** NFPA-20 compliant